Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM Silicon Valley, Microsoft
www.artbyphysicistkittyyeung.com Y @KittyArtPhysics
@artbyphysicistkittyyeung

Nov 15, 2019
Hackaday Supercon

Resources:

Microsoft quantum team
Study Group Tutorial (stay tuned)

Book: Quantum Computation and Quantum Information

Employee blog

Q\# documentation http://docs.microsoft.com/quantum

Quantum Computing Study Group Silicon Valley 2.x

STARTERS
INTRODUCTIDN What is quantum computing? What are the applications? How do we make them? STATES definition, classical bits, quantum bits, superpasition GATES definition, CNDT, circuit representation, Hadamard, Blach sphere, Pauli ENTANGLEMENT Bell states, properties, construction, Greenberger-Horne-Zeilinger TELEPORTATION logic, theoretical derivation, circuit setup

ENTREES QUANTLM ALEDRITHMS

Deutsch - Josza
Grover Shar
ist to be added
DESSERTS
HARDWARE histary of development

> Natural qubits Trapped ions

Superconducting circuits
Silicon quantum dats
Diamond vacancy
Topological qubits

1982: Feynman proposed the idea of creating machines based on the laws of quantum mechanics

1985: David Deutsch developed Quantum Turing machine, showing that quantum circuits are universal

What is it?

Performing calculations based on the laws of quantum mechanics

1994: Peter Shor came up with a quantum algorithm to factor very large numbers in polynomial time

1997: Grover developed a quantum search algorithm with $\mathrm{O}(\sqrt{ } \mathrm{N})$ complexity

Applications

- Algorithms
- Cryptography
- Quantum simulations

Quantum Computer Hardware

- Trapped ions
- Superconducting
- Topological

2-level system
Superposition
Entanglement
Interference

A bit of the action

In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Trapped Ion

ELECTRDDS CREATING EM FIELDS,
TAPING IONS IN A LINE

TWO ENERGY	FINE	HYPERFINE
LEVELS IN	STRUCTURE	STRUCTURE
AN ION		

Superconducting quantum circuits

Superconductors vs. Trapped Ions

L

CLASSICAL

Classical to quantum mechanical:

1. effective length of the circuit is smaller than the electron scattering length in the circuit;

2. temperature is low enough: $k T<\hbar \omega$, where k is the

Boltzmann constant, T is the temperature and $\omega=\sqrt{L C}$ is the natural frequency of the circuit.

Dilution refrigerators

http://www.research.ibm.com/ibm-q/learn/what-is-quantumcomputing/

Topological quantum computer

Majorana Fermions - particle equals anti-particle Fractional quantum Hall conductance Low temperature in magnetic field
https://arxiv.org/pdf/cond-mat/0412343.pdf

Quantized Majorana Conductance
https://www.nature.com/articles/nature26142
(3)

Q\#

- Installing QDK
- https://marketplace.visualstudio.com/items?itemName=quantum.De vKit
- Visual Studio or Visual Studio Code
- Jupyter Notebook katas

States - classical bits

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}
$$

MULTIPLE CLASSICAL BITS OF " 0 "s 2 "I"s.

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}
$$

$$
|00\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Math insert - Tensor product-
How does tensor product \otimes work?

$$
|01\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

and

$$
\binom{x_{0}}{x_{1}} \otimes\binom{y_{0}}{y_{1}}=\binom{x_{0}\binom{y_{0}}{y_{1}}}{x_{1}\binom{y_{0}}{y_{1}}}=\left(\begin{array}{l}
x_{0} y_{0} \\
x_{0} y_{1} \\
x_{1} y_{0} \\
x_{1} y_{1}
\end{array}\right)
$$

$$
\binom{x_{0}}{x_{1}} \otimes\binom{y_{0}}{y_{1}} \otimes\binom{z_{0}}{z_{1}}=\left(\begin{array}{l}
x_{0} y_{0} z_{0} \\
x_{0} y_{0} z_{1} \\
x_{0} y_{1} z_{0} \\
x_{0} y_{1} z_{1} \\
x_{1} y_{0} z_{0} \\
x_{1} y_{0} z_{1} \\
x_{1} y_{1} z_{0} \\
x_{1} y_{1} z_{1}
\end{array}\right)
$$

$$
|10\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

For example, the number 4 can be represented with a three-bit string 100. We can write

$$
|11\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
|4\rangle=|100\rangle=\binom{0}{1} \otimes\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

MATERIAL CROSS-SECTION

REGION WITH MOSTLY POSITIVE CHARGES

CIRCUIT SYMBOL

IN CLASSICAL COMPUTERS, " O "s \& "I"'s ARE ACHIEVED USING TRANSISTORS. THEY ARE MADE OF LAYERS OF CONDUCTORS, SEMI-CONDUCTORS AND INSULATORS. DEPENDING ON THE VOLTAGE APPLIED TO THE GATE, ELECTRIC CURRENT CAN FLOW FROM SOURCE TO DRAIN, OR NOT, THUS, ACTING LIKE A SWITCH FLIPPING BETWEEN "ON" OR "OFF".
|1>
|0>

THE BUILDING BLOCKS OF QUANTUM COMPUTERS ARE VERY DIFFERENT.

Quantum bits - qubits

A SPINNING COIN IS LIKE A QUBIT.

 EITHER LANDING ON "HEADS" OR"TAILS" IS POSSIBLE

- "HEADS" AND "TAILS" ARE IN SUPERPOSITION.

$$
|\psi\rangle=\binom{a}{b}=a|0\rangle+b|1\rangle
$$

$$
|a|^{2}+|b|^{2}=1
$$

$$
\begin{gathered}
|\psi\rangle=\binom{a}{b} \otimes\binom{c}{d} \\
=\left(\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right) \\
=a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle \\
|a c|^{2}+|a d|^{2}+|b c|^{2}+|b d|^{2}=1
\end{gathered}
$$

Superposition

Multiple qubits.

Superposition of states is the fundamental factor that's making quantum computing powerful. Because while a classical bit can only be in either $|0\rangle$ or $|1\rangle$, a qubit can be in a state where $|0\rangle$ and $|1\rangle$ coexist - a complex linear combination between $|0\rangle$ and $|1\rangle$. Thus, if we make a computing system out of this quantum phenomenon, we can have a single qubit that contains information that two classical bits would be needed. With N qubits, the system can compute 2^{N} classical bits of information.

Dirac notation and wavefunction

Paul Dirac

$<$
Physicist

Paul Adrien Maurice Dirac OM FRS was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics. Wikipedia

Born: August 8, 1902, Bristol, United Kingdom
Died: October 20, 1984, Tallahassee, FL
Field: Theoretical physics
Spouse: Margit Wigner (m. 1937-1984)

Schrödinger equation has the form of a wave equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(\boldsymbol{r}, t)+V(\boldsymbol{r}, t) \Psi(\boldsymbol{r}, t)=i \hbar \frac{\partial \Psi(\boldsymbol{r}, t)}{\partial t}
$$

Therefore the solution is a linear combination Of all the possible
wavefunctions

$$
\int_{-\infty}^{+\infty} \phi_{j}{ }^{*}(x) \psi(x) d x=\sum_{i} c_{i} \int_{-\infty}^{+\infty} \phi_{j}(x)^{*} \phi_{i}(x) d x=c_{j} .
$$

In Dirac notation, $|\psi\rangle=\sum_{i} c_{i}\left|\phi_{i}\right\rangle$, where $c_{j}=\left\langle\phi_{j} \mid \psi\right\rangle$.
$|\Psi\rangle$ denotes "the state with wavefunction" $\Psi(\boldsymbol{r}, t)$

$$
\begin{aligned}
& \Psi^{*}(\boldsymbol{r}, t)=\langle\Psi| \\
& \int_{-\infty}^{+\infty} \phi^{*}(x) \psi(x) d x \equiv\langle\phi \mid \psi\rangle
\end{aligned}
$$

A qubit only has two "wavefunctions"

$$
\psi(x)=\sum_{i} c_{i} \phi_{i}(x)
$$

Nature

$$
|\psi\rangle=\binom{a}{b}=a|0\rangle+b|1\rangle
$$

Gates

unitarity $U^{\dagger} U=I$

So that it is reversible and probabilities add up to 1

Math insert - unitary, adjoint or Hermitian conjugate

In math, unitarity means $U^{\dagger} U=I$, where I is the identity matrix and the " \dagger " symbol (reads "dagger") means adjoint or Hermitian conjugate of matrix U. It can be further written as $U^{\dagger}=\left(U^{*}\right)^{T}=\left(U^{T}\right)^{*}$, where " T " denotes transpose and "*" complex conjugate:

$$
\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{N}
\end{array}\right)^{T}=\left(\begin{array}{llll}
U_{1} & U_{2} & \ldots & U_{N}
\end{array}\right)
$$

and if $a=a_{0}+i a_{1}$, then $a^{*}=a_{0}-i a_{1}$ by definition. Therefore,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{+}=\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right)
$$

CNOT

$$
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Math insert - Matrix multiplication
Gates are N by N matrices that multiply to state with 2^{N} vector elements. They follow the rules such that

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} & =\binom{a x+b y}{c x+d y} \\
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right)
\end{aligned}
$$

and so on.

CNOT $|10\rangle=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=|11\rangle$.

Similarly, $C|00\rangle=|00\rangle, C|01\rangle=|01\rangle$ and $C|11\rangle=|10\rangle$.

Circuit representation

Target B controlled by A

Hadamard H

$$
H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Hadamard H

$$
H=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
H|0\rangle=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\binom{1}{0}
$$

$$
=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}\binom{1}{0}+\frac{1}{\sqrt{2}}\binom{0}{1}
$$

$$
=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \equiv|+\rangle
$$

$$
H|1\rangle=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\binom{0}{1}
$$

$$
=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \equiv|-\rangle .
$$

Bloch sphere

H gate

Arbitrary state

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{-i \phi} \sin \frac{\theta}{2}|1\rangle
$$

the states $|0\rangle$ and $|1\rangle$ are just two special cases with $\theta=0^{\circ}$ and 180°, respectively.

Pauli gates

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
X\binom{\alpha}{\beta}=\binom{\beta}{\alpha}
$$

Pauli X

Pauli gates

$$
\begin{array}{cc}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \\
X\binom{\alpha}{\beta}=\binom{\beta}{\alpha} & Y\binom{\alpha}{\beta}=i\binom{-\beta}{\alpha}
\end{array}
$$

Pauli gates

$$
\begin{array}{lll}
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] & Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
X\binom{\alpha}{\beta}=\binom{\beta}{\alpha} & Y\binom{\alpha}{\beta}=i\binom{-\beta}{\alpha} & Z\binom{\alpha}{\beta}=\binom{\alpha}{-\beta}
\end{array}
$$

Pauli Y

General rotation

In general, rotation gates, R, about an axis can be described by the angles ϕ and θ :

$$
\begin{aligned}
& R_{z}(\phi)=\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\
-\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{gathered}
R_{x}(\theta)=\left[\begin{array}{cr}
\cos \frac{\theta}{2} & i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
=R_{z}\left(\frac{\pi}{2}\right) R_{y}(\theta) R_{z}\left(-\frac{\pi}{2}\right) .
\end{gathered}
$$

General rotation

In general, rotation gates, R, about an axis can be described by the angles ϕ and θ :

$$
\begin{aligned}
& R_{z}(\phi)=\left[\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\
-\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right]
\end{aligned}
$$

In fact, any arbitrary single quantum logic gate can be decomposed into a series of rotation matrices:

$$
U=e^{i \gamma}\left[\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right]\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right]
$$

with the only constraint on the gate being unitary. Here, $e^{i \gamma}$ is a global phase shift that can be added without affecting the behavior.

Hadamard revisit

$H|0\rangle=|+\rangle$

Measurement - not a gate

$$
\begin{aligned}
& |\psi\rangle=c_{00}|00\rangle+c_{01}|01\rangle+c_{10}|10\rangle+c_{11}|11\rangle \\
& P=\left|c_{00}\right|^{2}+\left|c_{01}\right|^{2} \quad \text { If first qubit is } 0 \\
& \left|\psi^{\prime}\right\rangle=\frac{c_{00}|00\rangle+c_{01}|01\rangle}{\sqrt{P}} \quad \text { After measurement }
\end{aligned}
$$

Not reversible

Measurement

If we use the wavefunction approach, we can derive the value we'd expect to measure for a large number of measurements of a given observable, M. The expectation value can be obtained as

$$
\langle M\rangle=\langle\psi| M|\psi\rangle=\sum_{j} m_{j}\left|c_{j}\right|^{2},
$$

where m_{j} is each measurement result of M, and $\left|c_{j}\right|^{2}=P\left(m_{j}\right)$ is the probability of getting result m_{j}. Obtaining m_{j} leaves the system in the state $\left|\psi_{j}\right\rangle$. This unavoidable disturbance of the system caused by the measurement process is often described as a "collapse," a "projection" or a "reduction" of the wavefunction.

Generalized probability theory -> forget about wavefuntions, just look at probability

$$
\begin{array}{ll}
\sum_{i} p_{i}=1 & \begin{array}{l}
\text { 1-norm } \\
\text { Classical }
\end{array} \\
\sum_{i}\left|a_{i}\right|^{2}=1 & \begin{array}{l}
\text { 2-norm } \\
\text { Quantum mechanical }
\end{array}
\end{array}
$$

Amplitude can be positive, negative or complex

```
2-norm Vs 1-norm
https://www.scottaaronson.com/democritus/lec9.html
```

Scott Aaronson
$<$
American computer scientis

Scott Joel Aaronson is an American theoretical computer scientist and David J. Bruton Jr. Centennial Professor of Computer Science at the University of Texas at Austin. His primary areas of research are quantum computing and computational complexity theory. Wikipedia
Born: May 21, 1981 (age 37 years), Philadelphia, PA
Nationality: America
Spouse: Dana Moshkovitz
Books: Quantum Computing Since Democritus
Known for: PostBQP, P versus NP problem, Boson sampling Education: Cornell University, University of California, Berkeley

To read more rigorous mathematical derivations of the axioms in modern quantum theory:

- https://arxiv.org/abs/quant-ph/0101012
- https://arxiv.org/abs/1011.6451
- https://arxiv.org/abs/quant-ph/0104088

Interference

CONSTRUCTIVE INTERFERENCE

DESTRUCTIVE INTERFERENCE

Interference

CONSTRUCTIVE INTERFERENCE

DESTRUCTIVE INTERFERENCE

Quantum mechanical

$$
P(C)=0.7 \times 0.8+0.3 \times 0.1=0.59, \text { or } 59 \% .
$$

$$
\begin{aligned}
& a_{c}=\sqrt{0.7} \times \sqrt{0.8}-\sqrt{0.3} \times \sqrt{0.1} \\
& P(C)=\left|a_{c}\right|^{2} \approx 0.548, \text { or } 54.8 \%
\end{aligned}
$$

Entanglement

```
Bell states
|\mp@subsup{\varphi}{}{\pm}\rangle=\frac{|01\rangle\pm|10\rangle}{\sqrt{}{2}}\mathrm{ and }|\mp@subsup{\phi}{}{\pm}\rangle=\frac{|00\rangle\pm|11\rangle}{\sqrt{}{2}}
```


Take $\left|\phi^{+}\right\rangle$as an example, upon measuring the first qubit, one obtains two possible results:

1. First qubit is 0 , get a state $\left|\phi^{\prime}\right\rangle=|00\rangle$ with probability $\frac{1}{2}$.
2. First qubit is 1 , get a state $\left|\phi^{\prime \prime}\right\rangle=|11\rangle$ with probability $1 / 2$.

If the second qubit is measured, the result is the same as the above. This means that measuring one qubit tells us what the other qubit is.

Entanglement

Math insert - entangled states cannot be factored back to individual qubits-

Remember in section 1.1, a two-qubit state can be obtained by doing a tensor product of two individual one-qubit states. However, a Bell state cannot be factored back into two individual qubits. For example,

$$
\left|\phi^{ \pm}\right\rangle=\frac{|00\rangle \pm|11\rangle}{\sqrt{2}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

If we want to factor it back to two separate qubits as in $\binom{a}{b} \otimes\binom{c}{d}$, then this set of equations need to be simultaneously satisfied
$a c=\frac{1}{\sqrt{2}}, a d=0, b c=0$ and $b d=\frac{1}{\sqrt{2}}$. Unfortunately, it is impossible. This set of equations has no solution. It can only be 50% chance of getting $|00\rangle=\binom{1}{0} \otimes\binom{1}{0}$ or $|11\rangle=\binom{0}{1} \otimes\binom{0}{1}$

Creating Bell states

In	Out
$\|00\rangle$	$(\|00\rangle+\|11\rangle) / \sqrt{2} \equiv\left\|\beta_{00}\right\rangle$
$\|01\rangle$	$(\|01\rangle+\|10\rangle) / \sqrt{2} \equiv\left\|\beta_{01}\right\rangle$
$\|10\rangle$	$(\|00\rangle-\|11\rangle) / \sqrt{2} \equiv\left\|\beta_{10}\right\rangle$
$\|11\rangle$	$(\|01\rangle-\|10\rangle) / \sqrt{2} \equiv\left\|\beta_{11}\right\rangle$

Try proving this table

Greenberger - Horne - Zeilinger (GHZ) states

$$
\begin{aligned}
& |G H Z\rangle_{\text {simplest }}=\frac{|000\rangle+|111\rangle}{\sqrt{2}} \\
& |G H Z\rangle_{\text {general }}=\frac{|0\rangle^{\otimes \mathrm{N}}+|1\rangle^{\otimes \mathrm{N}}}{\sqrt{2}}
\end{aligned}
$$

Imagine there are N entangled qubits. Because they are correlated, by measuring one qubit, we know the result of another qubit. If $N=500$, there are 2^{500} possible states in the system - more than the number of atoms in the Universe. Yet if they are all entangled, the Universe stores and calculates that amount of data simultaneously. This is the power of Nature that quantum computing utilizes.

$$
\left|\phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

Superdense coding

(3) Sending ovir one qubit

(4) BOB MEASURES BOTH Getting two classical bits

To send '01', she applies an X gate

$$
\left|\varphi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}
$$

$$
\left|\phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

Superdense coding

(3) Sending ovir one qubit

(4) BOB MEASURES BOTH GETTENG TWO CLASGICAL BETS

To send '01', she applies an X gate

$$
\left|\varphi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}
$$

To send ' 10 ', she applies a Z gate

$$
\left|\phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}
$$

$$
\left|\phi^{+}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

Superdense coding

(3) Sending ovir one qubit

(4) BOB MEASURES BOTH GETTING TWO CLASSICAL BITS

To send ' 01 ', she applies an X gate

$$
\left|\varphi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}
$$

To send ' 10 ', she applies a Z gate

$$
\left|\phi^{-}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}}
$$

For '11', she uses an $i Y$ gate or a $Z * X$ gate $\quad\left|\varphi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}$

Teleportation

First two qubits	Third qubit	Alice tells Bob to
$\mathbf{0 0}$	$[\alpha\|0\rangle+\beta\|1\rangle]$	do nothing
$\mathbf{0 1}$	$[\alpha\|1\rangle+\beta\|0\rangle]$	apply X
$\mathbf{1 0}$	$[\alpha\|0\rangle-\beta\|1\rangle]$	apply Z
$\mathbf{1 1}$	$[\alpha\|1\rangle-\beta\|0\rangle]$	apply X and Z

BOB APPLIES GATE(S)
BASED ON ALICE'S
RESULT. THIS TUPNS
HIS QUBIT INTO THE

SAME STATE AS HER NEN ONE.

Teleportation

$$
\text { Let }\left|A^{\prime}\right\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\begin{gathered}
\left|A^{\prime}\right\rangle\left|\phi^{+}\right\rangle=(\alpha|0\rangle+\beta|1\rangle) \frac{|00\rangle+|11\rangle}{\sqrt{2}} \\
=\frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle) . \\
\text { CNOT }\left|A^{\prime}\right\rangle\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|011\rangle+\beta|110\rangle+\beta|101\rangle)
\end{gathered}
$$

Teleportation

If the first qubit is 0 , the state after measurement becomes

$$
\frac{1}{2}[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)] .
$$

If then another measurement is done on the second qubit and it is 0 , the state becomes

$$
\frac{1}{2}[|00\rangle(\alpha|0\rangle+\beta|1\rangle)] .
$$

This also tells us that the third qubit is in state $[\alpha|0\rangle+\beta|1\rangle]$.

A common mistake

A COMMON MESTAKE ON ENTANGLENENT :

ALICE AND BOB HAVE TO EXCHANGE CLASSICAL INFORMATION (SLOWER THAN LEGHT) IN THE CASE OF TELEPORTATION. FOR EXAMPLE.

Encryption

They can't communicate faster than light, but at least they can communicate securely.

Q\# exercise: option 1

No installation, web-based Jupyter Notebooks

- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas

Q\# exercise: option 2

Prerequisites

- Install VS Code and Quantum Development Kit extension according to instructions
- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas

Q\# exercise: option 3

Prerequisites

- Please install Jupyter Notebooks and Q\# following the instructions at https://docs.microsoft.com/quantum/install-guide\#develop-with-jupyter-notebooks (any platform and any editor is fine)
- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas

Q\# exercise: Single-qubit gates

1. Go to Basic Gates katas Task 1.1
2. Task 1.8

Q\# exercise: Two-qubit gates
3. Task 2.1

Q\# exercise: Superposition and Entanglement

1. Go to Superposition katas Task 4
2. Task 6
3. Try completing other tasks

Q\# exercise: Measurement

1. Go to Measurement katas Task 1.1 r
2. 1.3
3. Try completing other tasks

Q\# exercise: Teleportation

1. Go to Teleportation katas Task 1.1-1.7
2. Try completing other tasks

Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM Silicon Valley, Microsoft
www.artbyphysicistkittyyeung.com @KittyArtPhysics
(0) @artbyphysicistkittyyeung

Nov 15, 2019
Hackaday Supercon

